
| CALLISTAENTERPRISE.SE

DON'T BLOCK YOUR MOBILES
AND INTERNET OF THINGS

MAGNUS LARSSON, PÄR WENÅKER, ANDERS ASPLUND

2014-10-23

Use non blocking I/O for scalable and resilient server applications

•  The Big Picture

•  Demonstration

•  Details

•  Experiences from a real life projects

•  Summary & next step

AGENDA

INTRODUCTION

3

The Big Picture

THE SCALABILITY CHALLENGE…

4
Source: http://www.theconnectivist.com/2014/05/
infographic-the-growth-of-the-internet-of-things/

…SERVICES ARE CONNECTED…

5
Source: http://techblog.netflix.com/2013/01/
announcing-ribbon-tying-netflix-mid.html

…SERVICES FAILS…

6
Source: http://techblog.netflix.com/2013/01/
announcing-ribbon-tying-netflix-mid.html

WATCH OUT FOR THE DOMINO EFFECT!

7
Source: http://techblog.netflix.com/2013/01/
announcing-ribbon-tying-netflix-mid.html

WATCH OUT FOR THE DOMINO EFFECT!

8
Source: http://techblog.netflix.com/2013/01/
announcing-ribbon-tying-netflix-mid.html

Resilience is
as important
as scalability

•  http://www.reactivemanifesto.org

THE REACTIVE MANIFESTO

9

•  Responsive
-  ”The system responds in a timely manner if at all possible. Responsiveness is the

cornerstone of usability and utility, but more than that, responsiveness means
that problems may be detected quickly and dealt with effectively. Responsive
systems focus on providing rapid and consistent response times, establishing
reliable upper bounds so they deliver a consistent quality of service. This
consistent behaviour in turn simplifies error handling, builds end user
confidence, and encourages further interaction.”

THE REACTIVE MANIFESTO

10

•  Elastic (scalable)
-  ”The system stays responsive under varying workload. Reactive Systems can

react to changes in the input rate by increasing or decreasing the resources
allocated to service these inputs. This implies designs that have no contention
points or central bottlenecks, resulting in the ability to shard or replicate
components and distribute inputs among them. Reactive Systems support
predictive, as well as Reactive, scaling algorithms by providing relevant live
performance measures. They achieve elasticity in a cost-effective way on
commodity hardware and software platforms.”

THE REACTIVE MANIFESTO

11

•  Resilient
-  ” The system stays responsive in the face of failure. This applies not only to

highly-available, mission critical systems — any system that is not resilient will
be unresponsive after a failure. Resilience is achieved by replication,
containment, isolation and delegation. Failures are contained within each
component, isolating components from each other and thereby ensuring that
parts of the system can fail and recover without compromising the system as a
whole. Recovery of each component is delegated to another (external) component
and high-availability is ensured by replication where necessary. The client of a
component is not burdened with handling its failures.”

THE REACTIVE MANIFESTO

12

•  Message driven
-  ” Reactive Systems rely on asynchronous message-passing to establish a

boundary between components that ensures loose coupling, isolation, location
transparency, and provides the means to delegate errors as messages. Employing
explicit message-passing enables load management, elasticity, and flow
control by shaping and monitoring the message queues in the system and
applying back-pressure when necessary. Location transparent messaging as a
means of communication makes it possible for the management of failure to
work with the same constructs and semantics across a cluster or within a single
host. Non-blocking communication allows recipients to only
consume resources while active, leading to less system overhead.”

THE REACTIVE MANIFESTO

13

HOW DO WE FULFILL THE REACTIVE MANIFEST0???

14

?

TECHNICAL CHALLENGES…

15

•  Large scale of
concurrent requests

•  Load balancing
•  Circuit breaker

•  Large number of services
•  Distributed configuration
•  Service registration and

discovery

•  Responsive services
require more efficient
protocols than HTTP

•  WebSockets
•  IoT protocols

(http://iot.eclipse.org/)
•  MQTT, CoAP, LWM2M…

•  Large number of connected services
•  Configurable routing
•  Resilient service-to-service calls

THE FUNDAMENT OF REACTIVE SYSTEMS

16

Asynchronous &
Non Blocking I/O

• Asynchronous processing ≠ non blocking I/O

•  Asynchronous processing means that a thread
hands over processing to another thread

•  Non blocking I/O means that a thread
is not waiting for external resources,
such as databases or another services

➜Asynchronous processing can either use
 blocking I/O or non blocking I/O!

-  Stay tuned for examples…

…at least for the scope of this presentation…
ASYNCHRONOUS PROCESSING VS NON BLOCKING I/O

17

• No!!!
•  A short history lesson..
- Non blocking I/O has been supported in operating systems for ever

IS NON-BLOCKING I/O NEW?

18

2002 Java SE v1.4 New I/O (NIO) – fundamental support for non blocking I/O
in the Java platform

 … Netty, Jetty, … Early adopting web server and frameworks
improved the NIO support

2006 Akka, … Application frameworks that use specific non blocking web
servers & frameworks, e.g. Netty and Jetty

2009 Servlet 3.0 specification A portable specification for
non blocking I/O based HTTP – services!

2010 NING asynch-http-client A non blocking I/O HTTP - client

2012 Spring MVC 3.2 Spring support for non blocking I/O based HTTP – services.
Based on Servlet 3.0 but much easier to use!!!

2013 Servlet 3.1 specification Enhanced non blocking I/O based HTTP – services

2013 Spring Framework 4.0 Includes Spring MVC as a core part of the Framework

TRADITIONAL BLOCKING I/O

19

TRADITIONAL BLOCKING I/O

20

Slow external resource,
e.g. a database or
another service

TRADITIONAL BLOCKING I/O

21

The precious thread is busy
doing nothing at all…

At high load or temp outage of external
resources thread-pools are quickly filled up

resulting in all kinds of problems…

NON-BLOCKING I/O

22

NON-BLOCKING I/O

23

No threads are locked while waiting
for slow external resources!

WHAT ABOUT BLOCKING RESOURCE API’S??? (E.G. JDBC)

24

BLOCKING RESOURCE API’S, E.G. JDBC

25

Have we simply moved the
bottleneck one step?

Blocking
Resource

Servlet Container

Service #1

.

.

.

Service #2

Service #3

Service #n

Non-blocking
Resource

Blocking
Resource API

Non-blocking
Resource API

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

IN A MIXED ENVIRONMENT PROBLEMS CAN BE MITIGATED!

Thread Pool

Thread Pool

Blocking
Resource

Servlet Container

Service #1

.

.

.

Service #2

Service #3

Service #n

Non-blocking
Resource

Blocking
Resource API

Non-blocking
Resource API

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

IN A MIXED ENVIRONMENT PROBLEMS CAN BE MITIGATED!

Thread Pool

Thread Pool

Thread Pool

Thread Pool

Blocking
Resource

Servlet Container

Service #1

.

.

.

Service #2

Service #3

Service #n

Non-blocking
Resource

Blocking
Resource API

Non-blocking
Resource API

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

IN A MIXED ENVIRONMENT PROBLEMS CAN BE MITIGATED

A drained thread pool for
a blocking resource API

only affects parts of the services

INTRODUCTION

29

DEMONSTRATION

AN EXAMPLE OF POTENTIAL PROBLEMS WITH BLOCKING I/O

•  National reference architecture
•  Standardized protocols
•  Standardized message formats
•  Service catalog for routing
•  In operation since 2010

-  > 2000 connected care units
-  > 500 000 messages/day (8h)

National Healthcare Service Platform

30

VIEW FROM THE RUNNING SYSTEM IN PRODUCTION

31

HIGH LEVEL ARCHITECTURE…

32

Router

Routing
Database

Service
Consumer

Service

Service

Service

Service

Service

Consumer

Consumer

Consumer

Consumer

Consumer

SIMULATION OF THE ENVIRONMENT

33

Teststub-
Service

non-blocking-!
processing!

set-default-!
processing-time!

Router

Routing
Database

blocking-!
routing!

non-blocking-!
routing!

Test-
Consumer

load!

publish-!
data!

$ curl "http://localhost:9100/load?!
 port=9080&!
 uri=router-blocking&!
 minMs=3000&!
 maxMs=6000&!
 tps=50"!

SAMPLE OUTPUT FROM A LOAD TEST

34

Teststub-
Service

Router

Response Time

Processing Time

•  Normal load is
-  20 – 50 reqs/s
-  Service Provider response times: 3-6 s
- Default request timeout: 10 s

•  Start with 20 reqs/s
•  Step up to 50 reqs/s
•  If ok
- Add a increase of load, 65 reqs/s
- Add a minor problem, increase response times by 1s
- What happens?
- Why?

•  Switch to non blocking I/O and go unleashed!!!

DEMO

35

MAIN

36

THE DETAILS…

•  Servlet 3.0, JSR 315, dec 2009, Java EE 6
- Async Request Handling
- Threads allocated to connection when needed
- AsyncContext
- Requires servlets and filters to declare

that they are async enabled
- A portable API for non blocking I/O based HTTP services!

»  Web apps can be moved between e.g. Tomcat and Jetty

•  Servlet 3.1, JSR 340, apr 2013, Java EE 7
- Async I/O
- Allow writing and reading large responses and

requests without blocking

SERVLET 3.X

37

EXAMPLE SERVLET 3.0

38

@WebServlet(name="...", urlPatterns={"/..."}, asyncSupported=true)
public class MyServlet extends HttpServlet {

 ExecutorService executorService = ...;

 public void doGet(HttpServletRequest request, HttpServletResponse
response) {
 AsyncContext aCtx = request.startAsync(request, response);

 executorService.submit(() -> {
 doSomeLongRunningWork(aCtx);
 aCtx.dispatch("/WEB-INF/jsp/page.jsp");
 });
 }
}

Enable	
 async	

Start	
 an	
 async	

context	

	

Dispatch	
 work	
 on	

a	
 separat	
 thread	

	

Dispatch	
 back	
 to	
 servlet	

container	
 and	
 complete	

async	
 context	

•  Simplifies development of HTTP services

•  Annotation driven

•  Inversion of Control

•  Takes care of all the mess details with good default values
- Convention over Configuration
- Any default behavior can be overridden, e.g. using an annotation
- E.g. marshal/unmarshal to json or xml, handling of http headers…

•  Plays nicely with Spring Boot

INTRO TO SPRING MVC

39

1.  Blocking vs non blocking services

2.  Asynch call to a non blocking resource
a.  Callback vs anonymous inner class vs Java 8 Lambda expressions

3.  Asynch call to a blocking resource

4.  Patterns
a.  Router, Aggregator and Routing Slip

5.  Routing slip - example of “the callback hell”

•  All examples comes from the git-repo in the blog:
-  http://callistaenterprise.se/blogg/teknik/2014/04/22/

c10k-developing-non-blocking-rest-services-with-spring-mvc/
-  Look in the master branch

SPRING MVC – CODE EXAMPLES

40

1. SPRING MVC – BLOCKING I/O VS. NON BLOCKING I/O

41

@RestController!
public class MyController {!
!
 @RequestMapping("/block")!
 public R block(...) {!
 ...!
 return new R(...);!
 }!
}!

BLOCKING I/O

1. SPRING MVC –BLOCKING I/O VS. NON BLOCKING I/O

42

@RestController!
public class MyController {!
!
 @RequestMapping("/block")!
 public R block(...) {!
 ...!
 return new R(...);!
 }!
}!

@RestController!
public class ProcessingController {!
!
 @RequestMapping("/non-block")!
 public DeferredResult<R> nonBlock(...) {!
!
 DeferredResult<R> dr = !
 new DeferredResult<>();!
 dispatch(new MyTask(dr, ...));!
 return dr;!
 }!
}

public class MyTask extends MyCallback {!
!
 private DeferredResult<R> deferredResult;!
 public MyTask(DeferredResult<R> dr, ...) {!
 this.df = df;!
 }!
 public void done() {!
 df.setResult(new R(...));!
 }!
}!

BLOCKING I/O NON BLOCKING I/O

1. SPRING MVC –BLOCKING I/O VS. NON BLOCKING I/O

43

@RestController!
public class MyController {!
!
 @RequestMapping("/block")!
 public R block(...) {!
 ...!
 return new R(...);!
 }!
}!

@RestController!
public class ProcessingController {!
!
 @RequestMapping("/non-block")!
 public DeferredResult<R> nonBlock(...) {!
!
 DeferredResult<R> dr =  
 new DeferredResult<>();!
 dispatch(new MyTask(dr, ...));!
 return dr;!
 }!
}

public class MyTask implements MyCallback {!
!
 private DeferredResult<R> deferredResult;!
 public MyTask(DeferredResult<R> dr, ...) {!
 this.df = df;!
 }!
 public void done() {!
 df.setResult(new R(...));!
 }!
}!

BLOCKING I/O NON BLOCKING I/O

CALLBACK MODEL

DeferredResult IS THE KEY
SPRING MVC ABSTRACTION!

•  Non Blocking I/O HTTP calls with Ning async-http-client
2.A ASYNCH CALL TO A NON BLOCKING RESOURCE

44

private static final AsyncHttpClient asyncHttpClient = new AsyncHttpClient();!
!
@RequestMapping("/router-non-blocking-callback")!
public DeferredResult<String> nonBlockingRouter(...) {!
!
 DeferredResult<String> dr = new DeferredResult<String>();!
 asyncHttpClient.prepareGet(getUrl(...)).execute(new MyCallback(dr));!
 return dr;!
}!

public class MyCallback extends AsyncCompletionHandler<Response> {!
!
 private DeferredResult<String> dr;!
 public MyCallback(DeferredResult<String> dr) {!
 this.dr = dr;!
 }!
!
 public Response onCompleted(Response response) {!
 dr.setResult(response.getResponseBody());!
 }!
!
 public void onThrowable(Throwable t){...}!
}!

 2.B ANONYMOUS INNER CLASS

45

@RequestMapping("/router-non-blocking-anonymous")!
public DeferredResult<String> nonBlockingRouter(...) {!
 !
 final DeferredResult<String> dr = new DeferredResult<>();!
 !
 asyncHttpClient.prepareGet(getUrl(..)).execute(!
 !
 new AsyncCompletionHandler<Response>() {!
!
 public Response onCompleted(Response response) {!
 dr(response.getResponseBody());!
 }!
!
 public void onThrowable(Throwable t){...}!
 });!
!
 return dr;!
}!

2.C JAVA 8 AND LAMBDAS

46

@RequestMapping("/router-non-blocking-lambda")!
public DeferredResult<String> nonBlockingRouter(...) {!
!
 final DeferredResult<String> dr = new DeferredResult<>();!
!
 asyncHttpClient.execute(getUrl(...),!
 (response) -> {!
 dr.setResult(response.getResponseBody());!
 },!
 (throwable) -> {...}!
);!
!
 return dr;!
}!

3. ASYNCH CALL TO A BLOCKING RESOURCE

47

@Autowired!
@Qualifier("dbThreadPoolExecutor")!
private TaskExecutor dbThreadPoolExecutor;!
!
@RequestMapping("/aggregate-non-blocking-callback")!
public DeferredResult<String> nonBlockingAggregator(...) {!
!
 DeferredResult<String> dr= new DeferredResult<String>();!
 dbThreadPoolExecutor.execute(new DbLookupRunnable(dr, ...));!
 return dr;!
}!

public class DbLookupRunnable implements Runnable {!
!
 private DeferredResult<String> dr;!
 public DbLookupRunnable(DeferredResult<String> dr, ...) {!
 this.deferredResult = dr;!
 }!
 public void run() {!
 // Perform blocking database operation!
 ...!
 dr.setResult(responseFromDatabaseOperation)!
 }!
}!

4.A PATTERNS - ROUTER

48

Router

Routing
Database

Service
Consumer

Service

Service

Service

Service

Service

Consumer

Consumer

Consumer

Consumer

Consumer

4.B PATTERNS - AGGREGATOR

49

Aggregator

Lookup
Database

Service
Consumer

Service

Service

Service

Service

Service

Consumer

Consumer

Consumer

Consumer

Consumer

Calls to the service
are made in parallel

4.C PATTERNS – ROUTING SLIP

50

Routing Slip

Processing Step #1

Consumer

Processing Step #2

Processing Step #3

Processing Step #n

Service

Service Processing steps are:
•  Blocking or non-blocking
•  Internal only or use

external services
•  Unknown to its numbers

Service

Service

Service

Service

Consumer

Consumer

Consumer

•  Perform 5 sequential Non Blocking I/O calls…

5. ROUTING SLIP - EXAMPLE OF “THE CALLBACK HELL”

51

@RequestMapping("/routing-slip-non-blocking-lambda")!
public DeferredResult<String> nonBlockingRoutingSlip() throws IOException {!
!
 final DeferredResult<String> dr = new DeferredResult<>();!
!
 // Send request #1!
 ListenableFuture<Response> execute = asyncHttpClient.execute(getUrl(1),!
 (Response r1) -> {!
 processResult(r1.getResponseBody()); // Process response #1!
  

 // HOW TO SEND REQUEST #2 ???!

•  Perform 5 sequential Non Blocking I/O calls…

5. ROUTING SLIP - EXAMPLE OF “THE CALLBACK HELL”

52

@RequestMapping("/routing-slip-non-blocking-lambda")!
public DeferredResult<String> nonBlockingRoutingSlip() throws IOException {!
!
 final DeferredResult<String> dr = new DeferredResult<>();!
!
 // Send request #1!
 ListenableFuture<Response> execute = asyncHttpClient.execute(getUrl(1),!
 (Response r1) -> {!
 processResult(r1.getResponseBody()); // Process response #1!
 asyncHttpClient.execute(getUrl(2), // Send request #2!
 (Response r2) -> {!
 processResult(r2.getResponseBody()); // Process response #2!
 asyncHttpClient.execute(getUrl(3), // Send request #3!
 (Response r3) -> {!
 processResult(r3.getResponseBody()); // Process response #3!
 asyncHttpClient.execute(getUrl(4), // Send request #4!
 (Response r4) -> {!
 processResult(r4.getResponseBody()); // Process response #4!
 asyncHttpClient.execute(getUrl(5), // Send request #5!
 (Response r5) -> {!
 processResult(r5.getResponseBody()); // Process response #5!
 // Get the total result and set it on the deferred result!
 dr.setResult(getTotalResult());!
 ...

•  Perform 5 sequential Non Blocking I/O calls…

5. ROUTING SLIP - EXAMPLE OF “THE CALLBACK HELL”

53

@RequestMapping("/routing-slip-non-blocking-lambda")!
public DeferredResult<String> nonBlockingRoutingSlip() throws IOException {!
!
 final DeferredResult<String> dr = new DeferredResult<>();!
!
 // Send request #1!
 ListenableFuture<Response> execute = asyncHttpClient.execute(getUrl(1),!
 (Response r1) -> {!
 processResult(r1.getResponseBody()); // Process response #1!
 asyncHttpClient.execute(getUrl(2), // Send request #2!
 (Response r2) -> {!
 processResult(r2.getResponseBody()); // Process response #2!
 asyncHttpClient.execute(getUrl(3), // Send request #3!
 (Response r3) -> {!
 processResult(r3.getResponseBody()); // Process response #3!
 asyncHttpClient.execute(getUrl(4), // Send request #4!
 (Response r4) -> {!
 processResult(r4.getResponseBody()); // Process response #4!
 asyncHttpClient.execute(getUrl(5), // Send request #5!
 (Response r5) -> {!
 processResult(r5.getResponseBody()); // Process response #5!
 // Get the total result and set it on the deferred result!
 dr.setResult(getTotalResult());!
 ...

This is not OK!

•  Wrap up with a long list of nested returns…

•  This is a very simple example of composite non blocking I/O
services, the “callback hell” can get much much worse!!!

5. ROUTING SLIP - EXAMPLE OF “THE CALLBACK HELL”

54

 dr.setResult(getTotalResult());!
 return r5;!
 });!
 return r4;!
 });!
 return r3;!
 });!
 return r2;!
 });!
 return r1;!
 });!
 return deferredResult;!
}

MAIN

55

Experiences from
a real life projects

EXPERIENCES FROM REAL LIFE PROJECTS – API-GW

56

API-GW

EXPERIENCES FROM REAL LIFE PROJECTS – API-GW

57

API-GW

Processors

Filters

Client

Service

•  API-GW

- A sequence of processors.
- Every processor may be async and

potentially non blocking

EXPERIENCES FROM REAL LIFE PROJECTS – API-GW

58

•  API-GW

-  State engine managing the processing steps

EXPERIENCES FROM REAL LIFE PROJECTS - FINDINGS

59

•  Logging

-  Logback - MDC (Mapped Diagnostic Contexts)
» The MDC manages contextual information on a per thread basis

-  Log request over multiple threads?
»  Child threads inherit a copy of the MDC context
»  Manually move MDC context between threads

EXPERIENCES FROM REAL LIFE PROJECTS - FINDINGS

60

•  Servlet Filters

-  Filter and Servlet in same thread (Servlet spec)
»  Non-blocking request from filter?

- Outbound filter
»  Executes as soon as new thread is dispatched from servlet

SUMMARY

61

Summary and
next step

•  We have seen…
- Requirements of improved scalability and resilience driven by

increased number of connected devices (mobile devices and IoT)
- The Reactive Manifesto to the rescue!
- Non blocking I/O as a foundation
- Dramatic differences can be demonstrated between

blocking and non blocking solutions
-  Servlet 3.0 is the key to portable solutions
-  Spring MVC provides a really simple programming model
- …however, the callback hell is waiting for you…

•  Next time we will explain what we can do to
eliminate the callback hell using reactive frameworks…

SUMMARY

62

PREVIEW – ”THE WAY OUT OF CALLBACK HELL…”

63

final DeferredResult<String> deferredResult = new DeferredResult<>();!
!
Subscription subscription = Observable.<List<String>>just(new ArrayList<>())!
 .flatMap(result -> doAsyncCall(result, 1, this::processResult))!
 .flatMap(result -> doAsyncCall(result, 2, this::processResult))!
 .flatMap(result -> doAsyncCall(result, 3, this::processResult))!
 .flatMap(result -> doAsyncCall(result, 4, this::processResult))!
 .flatMap(result -> doAsyncCall(result, 5, this::processResult))!
 .subscribe(v -> deferredResult.setResult(getTotalResult(v)));

final DeferredResult<String> dr = new DeferredResult<>();!
!
ListenableFuture<Response> execute = asyncHttpClient.execute(getUrl(1),!
 (Response r1) -> {!
 processResult(r1.getResponseBody()); !
 asyncHttpClient.execute(getUrl(2), !
 (Response r2) -> {!
 processResult(r2.getResponseBody());!
 asyncHttpClient.execute(getUrl(3), !
 ...!
 (Response r5) -> {!
 processResult(r5.getResponseBody());!
 dr.setResult(getTotalResult());

Q&A

64

?

