
|   CALLISTAENTERPRISE.SE2019-09-12

MACHINE LEARNING ON THE JAVA 
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Purpose

This session is for You! 
I hope You will walk away from this with some new ideas 
and insights 
Feel free to ask questions, this is for all of You 

I try to avoid unfamiliar terminology, this is not about me, 
this is about You. 
I hope You will enjoy it!



AGENDA

• The incredible power of machine learning 
• Common machine learning challenges 
• How Java faces up to those challenges 
• How to implement a machine learning system in Java 
• Looking ahead 
• Summary
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THE INCREDIBLE POWER OF MACHINE 
LEARNING



WHAT PROBLEMS CAN ML SOLVE?
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• Some things are almost 
impossible to solve without ML, 
e.g. 
• Audio and image recognition 

•While other things can get (a 
lot) better 
• Interpreting human language 
• Recommendations 
• Predictions 
• Anomaly detection 

• Patterns are everywhere 
•What can your data tell you?



ARE ALL MACHINE LEARNING ALGORITHMS EQUAL?
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AIMLDL



ARE ALL MACHINE LEARNING ALGORITHMS EQUAL?
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AIMLDL

Any algorithms that makes 
a system seem smart. No "learning"

Algorithms that can learn 
patterns in structured data

Algorithms that can learn "deep 
features" of unstructured data



WHY JAVA?
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• Date.from(Instant.now()): 
{Python} > { Java} < {R}  

• Java is versatile with huge 
ecosystem of tools 

• My thesis: As ML moves 
toward more and more practical 
implementation instead of 
research, a system development 
approach is needed 



MACHINE LEARNING IN JAVA
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• Deeplearning4J 
• Weka 
• Apache Mahout 
• JavaML 
• Etc. 



MACHINE LEARNING IN JAVA
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• Open source 
• Includes various tools for ML 
- ND4J 
- DataVec 
- Arbiter 
- Some visualisation tools 

• Import of Keras models 
• Support dataprocessing on 

CUDA* enabled GPUs 

* CUDA: Compute Unified Device Architecture



COMMON MACHINE LEARNING 
CHALLENGES



CHALLENGE #1: COMPLEXITY 
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Backpropagation, naive Bayes, 
convolutional neural networks, 
decision trees, autoencoders, 
generative adversial networks, linear 
regression, eigenvectors, activation 
function, hyperparameters, 
classification, LSTM, random forest, 
support vector machines, restricted 
Boltzmann machine, interpolation, 
K- nearest, logistic regression, 
gradient descent, transpose, sequence 
padding, vectorization, polynomials, 
inference, hyperspace, n-dimensional 
arrays, learning rate, loss function...  
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CHALLENGE #2: DATA, DATA, DATA...

 21



CHALLENGE #3: BIAS VS. VARIANCE
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VS. VARIANCE



CHALLENGE #4: VECTORIZATION
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HOW DOES JAVA FACE UP TO THOSE 
CHALLENGES?



FACING CHALLENGE #1: COMPLEXITY
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• Ease-of-use: 
- Straight-forward integration 

with any Java project 
- Same builder pattern used 

throughout framework 
• Tutorials and documentation 
• Pre-packaged algorithms (and 

even ML-models) Disclaimer: Also be aware that in order to be successful in 
implementing machine learning algorithms you probably need more 
understanding than what a simple tutorial or even a wiki can provide. 
I strongly suggest spending some time studying the subject before 
running head-long into implementing intricate machine learning 
models. 



DAVID'S EASY-TO-USE CHEATSHEET

• Model: the algorithm, or program, that makes the prediction/
classification/grouping of the input data. I.e. the machine in machine 
learning. 
- In deep learning the model is called an artificial neural network. 

There are three basic types: 
» Multilayer perceptron 
» Convolutional neural network 
» Recurrent neural network 

• Data can be labelled or unlabelled, and structured or unstructured 
- If data is labelled we can train the model towards a known target, 

otherwise not 
- If the data is structured it means we know (some of ) the features of 

the data, otherwise not
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FACING CHALLENGE #2: DATA
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FileSplit fileSplit = new FileSplit(directory, {".png"}); 
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator(); 
ImageRecordReader recordReader = new ImageRecordReader(28,28,1, labelMaker); 
recordReader.initialize(fileSplit);
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FACING CHALLENGE #3: BIAS VS. VARIANCE

• Arbiter is a tool in the DL4J framework to automatically fine-tune a 
model's parameter space (learning rate, network size, regularization, 
etc.) 

• Virtually anything in the model configuration can be tuned in 
• Drawback: a lot more processing time to fine-tune parameters
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FACING CHALLENGE #4: VECTORIZATION

• Vectorization in DL4J is handled by ND4J (n-dimensional array)  
• JNI bridge to same C++ libraries used by NumPy 
• Allocates continuous blocks of of-heap memory (performance)  
• GPU (CUDA) 

 31



HOW TO IMPLEMENT ML SOLUTION IN 
JAVA?



SETTING UP DEEPLEARNING4J
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dependencies { 
compile("org.deeplearning4j:deeplearning4j-core:1.0.0-beta3")  
compile("org.nd4j:nd4j-native-platform:1.0.0-beta3") 

}

dependencies { 
compile("org.deeplearning4j:deeplearning4j-core:1.0.0-beta3")  
compile("org.nd4j:nd4j-cuda-9.2:1.0.0-beta3") 

}

Alternatively:



HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J 

 34



A
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HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J 
• Use Deeplearning4J MultilayerConfiguration to build a 

MultiLayerNetwork  

 53



HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK
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MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() 
.seed(132) 
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT) 
.weightInit(XAVIER) 
.updater(new Nesterov(learningRate, momentum)) 
.list() 
.layer(0, new ConvolutionLayer.Builder(5,5) 
.nIn(1).nOut(100).activation(IDENTITY).build()) 
// ... more layers here 
.layer(5, new OutputLayer.Builder() 

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26) 

.activation(SOFTMAX).build()) 
.backprop(true) 
.build();
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HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK
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MultiLayerNetwork model = new MultilayerNetwork(conf);

This is the network configuration from last slide...



HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J 
• Use Deeplearning4J MultilayerConfiguration to build a 

MultiLayerNetwork 
• Use Deeplearning4J EarlyStoppingTrainer to train and save the 

network 

 61



HOW TO BUILD: EARLYSTOPPINGTRAINER
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EarlyStoppingConfiguration conf = new EarlyStoppingConfiguration.Builder() 
.epochTerminationConditions(new MaxEpochsTerminationCondition(30)) 
.iterationTerminationConditions( 

new MaxTimeIterationTerminationCondition(2, HOURS)) 
.scoreCalculator(new ClassificationScoreCalculator(ACCURACY , iter)) 
.evaluateEveryNEpochs(1) 
.modelSaver(new LocalFileModelSaver(modelSaveDirectory)) 
.build();
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HOW TO BUILD: EARLYSTOPPINGTRAINER
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EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(conf, model, 
datasetIterator);







THE RESULT

 69

DEMO!



LOOKING AHEAD: IS THIS SOMETHING FOR ME?
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 72

Data  
scientist

Softare  
engineer

You?



LOOKING AHEAD

• Possibilities and risks, how do we measure them? 
• Ethics and responsibilities? 
• 5 years ahead vs 30 years ahead?
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LOOKING AHEAD: POSSIBILITIES
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• If we can have self-driving cars, 
what else can we have? 
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• If we can have self-driving cars, 
what else can we have? 
- Self-cooking kitchens? 
- Self-building buildings? 
- Smarter production machines 

that can be used for almost 
all production 

- Massively improved forecasts 
eliminating waste, optimised 
planning 

- Etc. 



LOOKING AHEAD: RISKS
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• Influencing democratic votes? 
- Cambridge Analytica, fake 

news, etc. 
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• Influencing democratic votes? 
- Cambridge Analytica, fake 

news, etc. 
• Job loss? 
- "Robot automation will 'take 

800 million jobs by 
2030'" (McKinsey Global 
Institute) 

• Surveillance society? 
• What risks do you see? 



SUMMARY

• Machine learning is about utilizing patterns in data, to make 
classifications, forecasts, or grouping of data 

• There are several different frameworks available for machine learning 
in Java. Some of them are focused on traditional machine learning 
algorithms. 

• Deeplearning4J is a Java framework for developing machine learning 
systems using deep learning algorithms such as artificial neural 
networks. 

• With modern frameworks like Deeplearning4J in Java or Keras in 
Python, much of the complexity of machine learning algorithms are 
abstracted away.  

• Machine learning is about to impose mayor changes to all parts of our 
society, for good or bad. Are you prepared?
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Thank You!

This session was for You! 
I hope You will walk away from this with some new ideas 
and insights 

I hope You have enjoyed it!


