
| CALLISTAENTERPRISE.SE2019-09-12

MACHINE LEARNING ON THE JAVA
PLATFORM

DAVID STRÖM

Purpose

This session is for You!
I hope You will walk away from this with some new ideas
and insights
Feel free to ask questions, this is for all of You

I try to avoid unfamiliar terminology, this is not about me,
this is about You.
I hope You will enjoy it!

AGENDA

• The incredible power of machine learning
• Common machine learning challenges
• How Java faces up to those challenges
• How to implement a machine learning system in Java
• Looking ahead
• Summary

 3

THE INCREDIBLE POWER OF MACHINE
LEARNING

WHAT PROBLEMS CAN ML SOLVE?

 5

• Some things are almost
impossible to solve without ML,
e.g.
• Audio and image recognition

•While other things can get (a
lot) better
• Interpreting human language
• Recommendations
• Predictions
• Anomaly detection

• Patterns are everywhere
•What can your data tell you?

ARE ALL MACHINE LEARNING ALGORITHMS EQUAL?

 6

AIMLDL

ARE ALL MACHINE LEARNING ALGORITHMS EQUAL?

 7

AIMLDL

Any algorithms that makes
a system seem smart. No "learning"

Algorithms that can learn
patterns in structured data

Algorithms that can learn "deep
features" of unstructured data

WHY JAVA?

 8

• Date.from(Instant.now()):
{Python} > { Java} < {R}

• Java is versatile with huge
ecosystem of tools

• My thesis: As ML moves
toward more and more practical
implementation instead of
research, a system development
approach is needed

MACHINE LEARNING IN JAVA

 9

• Deeplearning4J
• Weka
• Apache Mahout
• JavaML
• Etc.

MACHINE LEARNING IN JAVA

 10

• Open source
• Includes various tools for ML
- ND4J
- DataVec
- Arbiter
- Some visualisation tools

• Import of Keras models
• Support dataprocessing on

CUDA* enabled GPUs

* CUDA: Compute Unified Device Architecture

COMMON MACHINE LEARNING
CHALLENGES

CHALLENGE #1: COMPLEXITY

 12

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 13

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 14

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 15

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 16

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 17

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 18

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 19

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #1: COMPLEXITY

 20

Backpropagation, naive Bayes,
convolutional neural networks,
decision trees, autoencoders,
generative adversial networks, linear
regression, eigenvectors, activation
function, hyperparameters,
classification, LSTM, random forest,
support vector machines, restricted
Boltzmann machine, interpolation,
K- nearest, logistic regression,
gradient descent, transpose, sequence
padding, vectorization, polynomials,
inference, hyperspace, n-dimensional
arrays, learning rate, loss function...

CHALLENGE #2: DATA, DATA, DATA...

 21

CHALLENGE #3: BIAS VS. VARIANCE

 22

VS. VARIANCE

CHALLENGE #4: VECTORIZATION

 23

HOW DOES JAVA FACE UP TO THOSE
CHALLENGES?

FACING CHALLENGE #1: COMPLEXITY

 25

• Ease-of-use:
- Straight-forward integration

with any Java project
- Same builder pattern used

throughout framework
• Tutorials and documentation
• Pre-packaged algorithms (and

even ML-models) Disclaimer: Also be aware that in order to be successful in
implementing machine learning algorithms you probably need more
understanding than what a simple tutorial or even a wiki can provide. 
I strongly suggest spending some time studying the subject before
running head-long into implementing intricate machine learning
models.

DAVID'S EASY-TO-USE CHEATSHEET

• Model: the algorithm, or program, that makes the prediction/
classification/grouping of the input data. I.e. the machine in machine
learning.
- In deep learning the model is called an artificial neural network.

There are three basic types:
» Multilayer perceptron
» Convolutional neural network
» Recurrent neural network

• Data can be labelled or unlabelled, and structured or unstructured
- If data is labelled we can train the model towards a known target,

otherwise not
- If the data is structured it means we know (some of) the features of

the data, otherwise not

 26

FACING CHALLENGE #2: DATA

 27

FileSplit fileSplit = new FileSplit(directory, {".png"});
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
ImageRecordReader recordReader = new ImageRecordReader(28,28,1, labelMaker);
recordReader.initialize(fileSplit);

FACING CHALLENGE #2: DATA

 28

FileSplit fileSplit = new FileSplit(directory, {".png"});
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
ImageRecordReader recordReader = new ImageRecordReader(28,28,1, labelMaker);
recordReader.initialize(fileSplit);

FACING CHALLENGE #2: DATA

 29

FileSplit fileSplit = new FileSplit(directory, {".png"});
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
ImageRecordReader recordReader = new ImageRecordReader(28,28,1, labelMaker);
recordReader.initialize(fileSplit);

FACING CHALLENGE #3: BIAS VS. VARIANCE

• Arbiter is a tool in the DL4J framework to automatically fine-tune a
model's parameter space (learning rate, network size, regularization,
etc.)

• Virtually anything in the model configuration can be tuned in
• Drawback: a lot more processing time to fine-tune parameters

 30

FACING CHALLENGE #4: VECTORIZATION

• Vectorization in DL4J is handled by ND4J (n-dimensional array)
• JNI bridge to same C++ libraries used by NumPy
• Allocates continuous blocks of of-heap memory (performance)
• GPU (CUDA)

 31

HOW TO IMPLEMENT ML SOLUTION IN
JAVA?

SETTING UP DEEPLEARNING4J

 33

dependencies {
compile("org.deeplearning4j:deeplearning4j-core:1.0.0-beta3")
compile("org.nd4j:nd4j-native-platform:1.0.0-beta3")

}

dependencies {
compile("org.deeplearning4j:deeplearning4j-core:1.0.0-beta3")
compile("org.nd4j:nd4j-cuda-9.2:1.0.0-beta3")

}

Alternatively:

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J

 34

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

A
Input: 28x28 px

Convolutional layer #1
5x5

"A"

Convolutional layer #2
5x5

Subsampling layer #1
100

Subsampling layer #2
50

Dense layer
150

Output layer
26

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J
• Use Deeplearning4J MultilayerConfiguration to build a

MultiLayerNetwork

 53

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 54

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 55

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 56

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 57

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 58

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 59

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(132)
.optimizationAlgo(STOCHASTIC_GRADIENT_DESCENT)
.weightInit(XAVIER)
.updater(new Nesterov(learningRate, momentum))
.list()
.layer(0, new ConvolutionLayer.Builder(5,5)
.nIn(1).nOut(100).activation(IDENTITY).build())
// ... more layers here
.layer(5, new OutputLayer.Builder()

.lossFunction(NEGATIVELOGLIKELIHOOD).nOut(26)

.activation(SOFTMAX).build())
.backprop(true)
.build();

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

 60

MultiLayerNetwork model = new MultilayerNetwork(conf);

This is the network configuration from last slide...

HOW TO BUILD: CONVOLUTIONAL NEURAL NETWORK

• We will build a convolutional neural network using Deeplearning4J
• Use Deeplearning4J MultilayerConfiguration to build a

MultiLayerNetwork
• Use Deeplearning4J EarlyStoppingTrainer to train and save the

network

 61

HOW TO BUILD: EARLYSTOPPINGTRAINER

 62

EarlyStoppingConfiguration conf = new EarlyStoppingConfiguration.Builder()
.epochTerminationConditions(new MaxEpochsTerminationCondition(30))
.iterationTerminationConditions(

new MaxTimeIterationTerminationCondition(2, HOURS))
.scoreCalculator(new ClassificationScoreCalculator(ACCURACY , iter))
.evaluateEveryNEpochs(1)
.modelSaver(new LocalFileModelSaver(modelSaveDirectory))
.build();

HOW TO BUILD: EARLYSTOPPINGTRAINER

 63

EarlyStoppingConfiguration conf = new EarlyStoppingConfiguration.Builder()
.epochTerminationConditions(new MaxEpochsTerminationCondition(30))
.iterationTerminationConditions(

new MaxTimeIterationTerminationCondition(2, HOURS))
.scoreCalculator(new ClassificationScoreCalculator(ACCURACY , iter))
.evaluateEveryNEpochs(1)
.modelSaver(new LocalFileModelSaver(modelSaveDirectory))
.build();

HOW TO BUILD: EARLYSTOPPINGTRAINER

 64

EarlyStoppingConfiguration conf = new EarlyStoppingConfiguration.Builder()
.epochTerminationConditions(new MaxEpochsTerminationCondition(30))
.iterationTerminationConditions(

new MaxTimeIterationTerminationCondition(2, HOURS))
.scoreCalculator(new ClassificationScoreCalculator(ACCURACY , iter))
.evaluateEveryNEpochs(1)
.modelSaver(new LocalFileModelSaver(modelSaveDirectory))
.build();

HOW TO BUILD: EARLYSTOPPINGTRAINER

 65

EarlyStoppingConfiguration conf = new EarlyStoppingConfiguration.Builder()
.epochTerminationConditions(new MaxEpochsTerminationCondition(30))
.iterationTerminationConditions(

new MaxTimeIterationTerminationCondition(2, HOURS))
.scoreCalculator(new ClassificationScoreCalculator(ACCURACY , iter))
.evaluateEveryNEpochs(1)
.modelSaver(new LocalFileModelSaver(modelSaveDirectory))
.build();

HOW TO BUILD: EARLYSTOPPINGTRAINER

 66

EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(conf, model,
datasetIterator);

THE RESULT

 69

DEMO!

LOOKING AHEAD: IS THIS SOMETHING FOR ME?

 70

Data
scientist

Softare
engineer

LOOKING AHEAD: IS THIS SOMETHING FOR ME?

 71

Data
scientist

Softare
engineer

LOOKING AHEAD: IS THIS SOMETHING FOR ME?

 72

Data
scientist

Softare
engineer

You?

LOOKING AHEAD

• Possibilities and risks, how do we measure them?
• Ethics and responsibilities?
• 5 years ahead vs 30 years ahead?

 73

LOOKING AHEAD: POSSIBILITIES

 74

• If we can have self-driving cars,
what else can we have?

LOOKING AHEAD: POSSIBILITIES

 75

• If we can have self-driving cars,
what else can we have?
- Self-cooking kitchens?

LOOKING AHEAD: POSSIBILITIES

 76

• If we can have self-driving cars,
what else can we have?
- Self-cooking kitchens?
- Self-building buildings?

LOOKING AHEAD: POSSIBILITIES

 77

• If we can have self-driving cars,
what else can we have?
- Self-cooking kitchens?
- Self-building buildings?
- Smarter production machines

that can be used for almost
all production

LOOKING AHEAD: POSSIBILITIES

 78

• If we can have self-driving cars,
what else can we have?
- Self-cooking kitchens?
- Self-building buildings?
- Smarter production machines

that can be used for almost
all production

- Massively improved forecasts
eliminating waste, optimised
planning

- Etc.

LOOKING AHEAD: RISKS

 79

• Influencing democratic votes?
- Cambridge Analytica, fake

news, etc.

LOOKING AHEAD: RISKS

 80

• Influencing democratic votes?
- Cambridge Analytica, fake

news, etc.
• Job loss?
- "Robot automation will 'take

800 million jobs by
2030'" (McKinsey Global
Institute)

LOOKING AHEAD: RISKS

 81

• Influencing democratic votes?
- Cambridge Analytica, fake

news, etc.
• Job loss?
- "Robot automation will 'take

800 million jobs by
2030'" (McKinsey Global
Institute)

• Surveillance society?

LOOKING AHEAD: RISKS

 82

• Influencing democratic votes?
- Cambridge Analytica, fake

news, etc.
• Job loss?
- "Robot automation will 'take

800 million jobs by
2030'" (McKinsey Global
Institute)

• Surveillance society?
• What risks do you see?

SUMMARY

• Machine learning is about utilizing patterns in data, to make
classifications, forecasts, or grouping of data

• There are several different frameworks available for machine learning
in Java. Some of them are focused on traditional machine learning
algorithms.

• Deeplearning4J is a Java framework for developing machine learning
systems using deep learning algorithms such as artificial neural
networks.

• With modern frameworks like Deeplearning4J in Java or Keras in
Python, much of the complexity of machine learning algorithms are
abstracted away.

• Machine learning is about to impose mayor changes to all parts of our
society, for good or bad. Are you prepared?

 83

Thank You!

This session was for You!
I hope You will walk away from this with some new ideas
and insights

I hope You have enjoyed it!

